Skip to main content

Valorant new game mode team Deathmatch

In the latest video by dev announced us about new game mode team death matches and seeing how they revealed about shows that it will very soon most probably in next act.
They also said that it would be there take on the team death matche which clearly tells us that there would be abilities evolved and even ultimates will be there but the way of getting them would be different. I know dev would do it right and the players will love it but for few weeks only. 
No game mode other than the main game mode can beat replication and even being the best no one really plays or is into it, players were exited for few weeks but then its just there which players play sometimes. Valorant is a compative game and is designed like that so a too casual game mode cannot give a long time boost to the game. 

Comments

Popular posts from this blog

Reducer Side Join

package my.org; import java.io.IOException; import org.apache.hadoop.fs.Path; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.MultipleInputs; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class redjoin1036 {     // -------------------- CUSTOMER MAPPER --------------------     public static class CustMapper extends Mapper<LongWritable, Text, Text, Text> {         public void map(LongWritable key, Text value, Context context)                 throws IOException, InterruptedException {             String[] line = value.toString().split(",");   ...

Map Reduce

 /*******************************************************************************************  * BIG DATA LAB – 9  * Name  : 21MIS1029  * Topic : MapReduce Programs – Join Operations & Aggregations  *******************************************************************************************/ /*******************************************************************************************  * (i) MAP SIDE JOIN  * ------------------------------------------------------------------------------------------  * Q1. Develop a Map Reduce Program to display the details of employees using two text files  *     (sample code is given) using Map Side Join.  *  * Input:  *   empdetails.txt → (emp_id, emp_name)  *   empdata.txt    → (emp_id, salary, dept_id)  *  * Output:  *   emp_id, salary, dept_id, emp_name  ****************************************************...

Map Side Join

package my.org; import java.io.*; import java.util.*; import org.apache.hadoop.fs.Path; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.io.*; import org.apache.hadoop.filecache.DistributedCache;   // Deprecated in newer versions, but fine for Hadoop 1.x import org.apache.hadoop.mapreduce.*; import org.apache.hadoop.mapreduce.Mapper.Context; import org.apache.hadoop.mapreduce.lib.input.*; import org.apache.hadoop.mapreduce.lib.output.*; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; public class mapsid1036 {     // ---------------- Mapper Class ----------------     public static class Map extends Mapper<LongWritable, Text, Text, Text> {         private ArrayList<String> employees = new ArrayList<String>();         // Setup method loads data from Distributed Cache         @Override         public void setup(Con...